

DEPARTMENT OF COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY

STUDENT LABORATORY MANUAL

OF

IV B.TECH I SEMESTER (R20)

REACT JS FRAMEWORK

INSTITUTE

VISION
Producing globally competent and quality technocrats with human values for the holistic needs

of industry and society

MISSION
 Creating an outstanding infrastructure and platform for enhancement of skills, knowledge and

behaviour of students towards employment and higher studies

 Providing a healthy environment for research, development and entrepreneurship, to meet the

expectations of industry and society.

 Transforming the graduates to contribute to the socio-economic development and welfare of

the society through value based education.

DEPARTMENT OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY

VISION

To excel in the computing arena and to produce globally competent computer science and

Information Technology graduates with Ethical and Human values to serve society.

MISSION

 To impart strong theoretical and practical background in computer science and information

technology discipline with an emphasis on software development.

 To provide an open environment to the students and faculty that promotes professional

growth

 To inculcate the skills necessary to continue their education and research for contribution

to society.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO1:Graduates of Computer Science and Information Technology will acquire strong

knowledge to analyze, design, and develop computing products and solutions for real-life

problems utilizing the latest tools, techniques, and technologies.

PEO2:Graduates of Computer Science and Information Technology shall have

interdisciplinary approach, professional attitude and ethics, communication, teamwork skills

and leadership capabilities to solve social issues through their Employment, Higher Studies

and Research.

PEO3:Graduates will engage in life-long learning and professional development to adapt to

dynamically computing environment.

PROGRAM OUTCOMES (POs)

PO1: Engineering Knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

PO2: Problem Analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of mathematics,

natural sciences, and engineering sciences.

PO3: Design & Development: Design solutions for complex engineering problems and design

system components or processes that meet the specified needs with appropriate consideration

for the public health and safety, and the cultural, societal, and environmental considerations

PO4: Investigations: Use research-based knowledge and research methods including design of

experiments, analysis and interpretation of data, and synthesis of the information to provide

valid conclusions.

PO5: Modern Tools: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities

with an understanding of the limitations.

PO6: Engineer & Society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to

the professional engineering practice.

PO7: Environment & Sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need

for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice

PO9: Individual & Team Work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings

PO10: Communication Skills: Communicate effectively on complex engineering activities

with the engineering community and with society at large, such as, being able to comprehend

and write effective reports and design documentation, make effective presentations, and give

and receive clear instructions

PO11: Project mgt. & Finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments

PO12: Life Long Learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1:Ability to solve contemporary issues utilizing skills

PSO2:To acquire knowledge of the latest tools and technologies to provide technical solutions

PSO3:To qualify in national and international competitive examinations for successful higher

studies and

Employment

Course Outcomes (CO’s)

C417.1 Understand the anatomy of React Java Script.

C417.2 Understand the life cycle methods of React JS.

C417.3 Implement React components for building applications.

C417.4 Implement React hooks for component reusability and monitoring.

C417.5 Implement React rendering for interactive applications.

.

SYLLABUS

Subject Code Subject Name L T P C

R20CIT-SC4101 React JS Framework (Skill Course) 0 1 2 2

Course Objectives:

 To learn essential, React JS skills for front-end development.

 To explore client-side JavaScript application development and the React library.

 To implement React components, hooks, and state management for building

interactive UIs.

 To gain experience with React.js, JSX, HTML, CSS, and JavaScript.

 To create a functional front-end web application using React.

Course Outcomes:

1. Understand the anatomy of React Java Script.

2. Understand the life cycle methods of React JS.

3. Implement React components for building applications.

4. Implement React hooks for component reusability and monitoring.

5. Implement React rendering for interactive applications.

Unit 1: React JS – Introduction to React JS, React vs Angular, React Version History,

Anatomy of React Project, Creating and Running React App.

Templating using JSX: Expressions, Operators, Attributes, Fragments.

Learning Outcomes: Student will be able to

 Understand react framework for building applications.(L2)

 Understand the installations of react packages.(L2)

 Create templates in react applications. (L4)

Unit 2:React Core:Props, State, Event Handling, Lists and Keys, Styling, React Life Cycle,

Life cycle methods, Mounting Life Cycle,

Learning Outcomes: Student will be able to

● Understand event handling in React. (L2).

● Implement life cycle methods in react.(L4).

● Create props and states in building react apps.(L4)

Unit 3:React Components: Pure Components, memo, Refs, Portals, Higher Order

Components (HOC), Context, HTTP requests (POST & GET).

Learning Outcomes: Student will be able to

● Understand http request methods in handling end points. (L2)

● Create components to handle react requests. (L4)

● Create higher order components and refs in react.(L4)

Unit 4: React Hooks: Introduction to Hooks, useState, useEffect, Run Effects, Fetching Data,

useContext, useReducer, useCallBack, useMemo, useRef, Custom Hooks

Learning Outcomes: Student will be able to

● Understand react hooks. (L2)

● Create hooks and custom methods for handling components. (L4)

● Implement context and callback methods in hooks. (L4)

Unit 5: React Render: Introduction to Rendering, useState, useReducer, State Immutability,

Parent & Child, Memo, Context, useCallBack.

Learning Outcomes: Student will be able to

● Understand the working react rendering. (L2)

● Implement userReducer and context for rendering react apps. (L4)

APPLICATIONS:

 Online web applications

 Financial, banking applications and gateways etc

 Online and Social media applications

TEXT BOOKS:

1. React.js Book: Learning React JavaScript Library From Scratch by Greg Sidelnikov,

Learning Curve.

2. React: Quickstart Step-By-Step Guide To Learning React Javascript Library (React.js,

Reactjs, Learning React JS, React Javascript, React Programming) by Lionel Lopez

REFERENCE BOOKS:

 Full-Stack React Projects: Learn MERN stack development by building modern web

apps using MongoDB, Express, React, and Node.js, 2nd Edition by Shama Hoque,

Packt

COURSE OUTCOMES VS POs MAPPING (DETAILED: HIGH: 3, MEDIUM: 2, LOW: 1)

COs PO

1

PO

2

PO

3

PO

4

PO

5

PO

6

PO

7

PO

8

PO

9

PO

10

PO

11

PO

12

PSO

1

PSO

2

PSO

3

C417.1 3 2 2 1 3 - - - 1 - 1 1 2 3 2

C417.2 3 2 1 1 3 - - - 1 - 1 1 1 3 3

C417.3 3 1 2 2 3 - - - 1 - 1 1 2 3 2

C417.4 3 1 2 2 3 - - - 1 - 1 1 2 3 3

C417.5 2 2 1 1 2 - - - 1 - 1 1 1 2 2

C417* 3 2 2 2 3 - - - 1 - 1 1 2 3 3

COURSE OUTCOMES - On successful completion of this course, students should be able

S.NO. DESCRIPTION PO (1…12)

MAPPING

PSO (1…3)

MAPPING

C417.1
Understand the anatomy of

React Java Script. (LEVEL 2)

PO1, PO2, PO3, PO4, PO5,

PO9, PO11, PO12
PSO1, PSO2, PSO3

C417.2

Understand the life cycle

methods of React JS. (LEVEL

2)

PO1, PO2, PO3, PO4, PO5,

PO9, PO11, PO12
PSO1, PSO2, PSO3

C417.3

Implement React components

for building applications.

(LEVEL 3)

PO1, PO2, PO3, PO4, PO5,

PO9, PO11, PO12
PSO1, PSO2, PSO3

C417.4

Implement React hooks for

component reusability and

monitoring. (LEVEL 3)

PO1, PO2, PO3, PO4, PO5,

PO9, PO11, PO12
PSO1, PSO2, PSO3

C417.5

Implement React rendering for

interactive applications.

(LEVEL 3)

PO1, PO2, PO3, PO4, PO5,

PO9, PO11, PO12
PSO1, PSO2, PSO3

COURSE OVERALL PO / PSO MAPPING: PO1, PO2, PO3, PO4, PO5, PO9, PO11, PO12,

PSO1, PSO2, PSO3.

L1 – Remember, L2 – Understand, L3 – Apply, L4 – Analyze, L5 – Evaluate, L6 – Create

INDEX

S.No Content Page

No.

Map

ping

with

CO’s

Mapping with

PO’s &

PSO’s

LAB EXPERIMENTS

1 Installation of NodeJS, ReactJS Libraries, Create ReactJS

App, and Run React App.

1-4 CO1 PO1, PO2, PO3,

PO4, PO5, PO9,

PO11, PO12,

PSO1, PSO2,

PSO3

2 Create a function component for displaying Employee

details in a table format using the props.

5-7 CO2 PO1, PO2, PO3,

PO4, PO5, PO9,

PO11, PO12,

PSO1, PSO2,

PSO3

3 Create a Class component for Student and display student

details in a table format using the props.

8-10 CO2 PO1, PO2, PO3,

PO4, PO5, PO9,

PO11, PO12,

PSO1, PSO2,

PSO3

4 Create a Stateful Class component for Employee and

display the details using <div> tag.

11-12 CO2 PO1, PO2, PO3,

PO4, PO5, PO9,

PO11, PO12,

PSO1, PSO2,

PSO3

5 Create a Stateless function component for Student and

display the details along with percentage.

13-15 CO2 PO1, PO2, PO3,

PO4, PO5, PO9,

PO11, PO12,

PSO1, PSO2,

PSO3

6 Create a Multipage React App using page routing with

react-router-dom library.

16-20 CO3 PO1, PO2, PO3,

PO4, PO5, PO9,

PO11, PO12,

PSO1, PSO2,

PSO3

7 Build a Counter app using the useState hook.

21-24 CO4 PO1, PO2, PO3,

PO4, PO5, PO9,

PO11, PO12,

PSO1, PSO2,

PSO3

8 Build a Favorite Color component using the useState

hook.

25-26 CO4 PO1, PO2, PO3,

PO4, PO5, PO9,

PO11, PO12,

PSO1, PSO2,

PSO3

9 Implement pagination using the useState, useEffect

hooks and Fetching Data.

27-30 CO4 PO1, PO2, PO3,

PO4, PO5, PO9,

PO11, PO12,

PSO1, PSO2,

PSO3

10 Build Timer & Counter components using useEffect

Hooks without and with Dependency respectively.

31-33 CO4 PO1, PO2, PO3,

PO4, PO5, PO9,

PO11, PO12,

PSO1, PSO2,

PSO3

11 Render a form component with validation using the

useState hook.

34-36 CO5 PO1, PO2, PO3,

PO4, PO5, PO9,

PO11, PO12,

PSO1, PSO2,

PSO3

12 Create a To-do List app using the useState, useEffect and

useContext hooks.

37-39 CO5 PO1, PO2, PO3,

PO4, PO5, PO9,

PO11, PO12,

PSO1, PSO2,

PSO3

13. Create a React App using the Nested Components and

useContext hook.

40-41 CO5 PO1, PO2, PO3,

PO4, PO5, PO9,

PO11, PO12,

PSO1, PSO2,

PSO3

14. Create a React App for tracking the state changes by

using useRef hook.

42-43 CO5 PO1, PO2, PO3,

PO4, PO5, PO9,

PO11, PO12,

PSO1, PSO2,

PSO3

15. Create a React App for tracking the multiple pieces of the

state changes by using the useReducer and Custom State

logic.

44-46 CO5 PO1, PO2, PO3,

PO4, PO5, PO9,

PO11, PO12,

PSO1, PSO2,

PSO3

Experiments Beyond the Syllabus

1 Create a React App to demonstrate how to fetch data by

using API call.

47-48 CO3 PO1, PO2, PO3,

PO4, PO5, PO9,

PO11, PO12,

PSO1, PSO2,

PSO3

2 Build a Password Generator App using React hooks.

49-54 CO4 PO1, PO2, PO3,

PO4, PO5, PO9,

PO11, PO12,

PSO1, PSO2,

PSO3

3 Build a Real-time Chat App using React hooks.

55-61 CO5 PO1, PO2, PO3,

PO4, PO5, PO9,

PO11, PO12,

PSO1, PSO2,

PSO3

Instructions to Students

Pre-lab Activities:

• Prepare observation note book which contains the following:

o Procedure/algorithm/program to solve the problems discussed in the theory

class

o Solutions to the exercises given in the previous lab session

• Refer the topics covered in theory class

In-lab activities:

• Note down errors observed while executing program and remedy for that.

• Note down corrections made to the code during the lab session

• Answer to vivo-voce

• Get the observation corrected

• Note down inferences on the topic covered by the programs executed

Post-lab activities:

• Solve the given exercises

• Devise possible enhancements that can be made to the solved problem to simplify the

logic

• Executed programs should be recorded in the lab record and corrected within one

week after completion of the experiment.

• After completion of every module, a test will be conducted, and assessment results

will have weight in the final internal marks.

General Instructions:

• Student should sign in the log register before accessing the system.

• Student is only responsible for any damage caused to the equipment in the laboratory

during his session.

• Usage of pen drives is not allowed in the lab.

• If a problem is observed in any hardware equipment, please report to the lab staff

immediately; do no attempt to fix the problem yourself.

• Systems must be shut down properly before leaving the lab.

• Please be considerate of those around you, especially in terms of noise level. While

labs are a natural place for conversations regarding programming, kindly keep the

volume turned down.

 P a g e | 1

Experiment – 1

AIM:

Installation of NodeJS, ReactJS Libraries, Create ReactJS App, and Run ReactApp.

DESCRIPTION:

The installation of Node.js and npm, the installation of essential React.js libraries, the creation of a

new React app using Create React App, and the process of running the newly created React

application. It provides step-by-step instructions to help beginners get started with React.js

development, from the initial setup to running a sample React app for the first time.

SOLUTION:

Step_1

Download & Install NodeJS from nodejs.org

Step_2

Check the version

 node -v

Step_3

Install React JS Libraries

 npm install -g create-react-app

Step_4

Create a folder reactjs

 mkdir reactjs

Step_5

Change directory

 cd reactjs

Step_6

Create ReactJS App

 npx create-react-app myapp

Step_7

Change directory

 cd myapp

Step_8

Run App

 npm start

 P a g e | 2

SAMPLE OUTPUT:

 P a g e | 3

Experiment – 2

AIM:

Create a function component for displaying Employee details in a table format using the props.

DESCRIPTION:

A React function component is one of the fundamental building blocks of a React application. It is a

JavaScript function that returns JSX (JavaScript XML) to define the structure and content of a user

interface component. React function components are used to create reusable, self-contained pieces of

a user interface.

Function components can accept input data, known as "props" (short for properties). Props are passed

into the component as arguments to the function and allow you to customize the behaviour and

appearance of the component.

Install create-react-app by running

npm-create-react-app myapp

After installation,change the directory to the myapp folder by running

Cd myapp

I’musing myapp here but you can call your app anything you want. Run

npm start

To start the development server whichisalwaysavailableatport3000,

i.e.http://localhost:3000.Whentheserverstartsrunningonport3000,youseeaspinner.

 P a g e | 4

SAMPLE OUTPUT:

 P a g e | 5

Experiment – 3

AIM:

Create a Class component for Student and display student details in a table format using theprops.

DESCRIPTION:

A class component must include the extends React.component statement. This statement creates an

inheritance to React.Component, and gives your component access to React.Component's functions.

The component also requires a render() method, this method returns HTML.

When creating a React component, the component's name must start with an uppercase letter.

Install create-react-app by running

npm-create-react-app my app

After installation, change the directory to the myapp folder by running

cd myapp

I’m using my app here but you can call your app anything you want. Run

npm start

To start the development server whichisalwaysavailableatport3000,

i.e.http://localhost:3000.Whentheserverstartsrunningonport3000,youseeaspinner.

SAMPLE OUTPUT:

 P a g e | 6

Experiment – 4

AIM:

Create a Stateful Class component for Employee and display the details using <div> tag.

DESCRIPTION:

‘<div>’ tag is a fundamental HTML element used for creating a container or a "division" in the user

interface. It doesn't have any specific behaviour in React; instead, it's primarily used for structuring and

grouping other elements and components.

Install create-react-app by running

npm-create-react-app myapp

After installation, change the directory to the myapp folder by running

cd myapp

I’m using myapp here but you can call your app anything you want. Run

npm start

To start the development server whichisalwaysavailableatport3000,

i.e.http://localhost:3000.Whentheserverstartsrunningonport3000,youseeaspinner.

SAMPLE OUTPUT:

 P a g e | 7

Experiment – 5

AIM:

Create a Stateless function component for Student and display the details along with percentage.

DESCRIPTION:

A stateless function component is a typical React component that is defined as a function that does

not manage any state. There are no constructors needed, no classes to initialize, and no lifecycle

hooks to worry about. These functions simply take props as an input and return JSX as an output.

Install create-react-app by running

npm-create-react-app myapp

After installation, change the directory to the myapp folder by running

cdmyapp

I’m using myapp here but you can call your app anything you want. Run

Nnpm start

To start the development server whichisalwaysavailableatport3000,

i.e.http://localhost:3000.Whentheserverstartsrunningonport3000,youseeaspinner.

SAMPLE OUTPUT:

 P a g e | 8

Experiment – 6

AIM:

Create a Multipage React App using page routing with react-router-dom library

DESCRIPTION:

In single-page applications (SPAs) built with React, routing helps navigate between multiple "pages"

without reloading the browser. React Router DOM, a popular library for managing routing, allows

developers to set up dynamic and nested routes within an application. This enables users to interact with

different views, maintaining a seamless user experience. In this approach, each "page" in the React app

corresponds to a component, and routing controls which component displays based on the URL.

A multi-page React application with efficient page routing using the React Router DOM library, ensures
smooth navigation across different pages.

SOLUTION:

- Begin by installing `react-router-dom` via npm:

npm install react-router-dom

- Import the necessary components from `react-router-dom` to configure routing within the app.

- In `App.js`, set up `BrowserRouter`, `Routes`, and `Route` components.

- Each route corresponds to a path and renders a specific component.

Folder Structure

To create an application with multiple page routes, let's first start with the file structure.

Within the src folder, we'll create a folder named pages with several files:

src\pages\:

 Layout.js

 Home.js

 Blogs.js

 Contact.js

 NoPage.js

Each file will contain a very basic React component.

Use React Router to route to pages based on URL:

Now we will use our Router in our index.js file.

 P a g e | 9

SAMPLE OUTPUT:

 P a g e | 10

Experiment – 7

AIM:

Build a Counter app using the useState hook

DESCRIPTION:

React.js has become very popular to the extent that almost every frontend developer wants to

learn how to use it. To get up and running with React, we have to set up our development

environment by installing React and will be using the CLI (Command Line Interface) tool

create-react-app, which is very popular in the React ecosystem.

Install create-react-app byrunning

npm-create-react-app myapp

After installation, change the directory to the myapp folder by running

cd myapp

I’m usingmyapp here but you can call your app anything you want. Run

npm start

To start the development server whichisalwaysavailableatport3000,

i.e.http://localhost:3000.Whentheserverstartsrunningonport3000,youseeaspinner.

To start bringing the counter app to life, import the useStatehook from React by

typing“import React { useState } from ‘react’” and the app.css file by typing “import

‘./app.css’”. Declare a function called App and return a div with CounterApp in an h1 tag as

shown in the snippet below:

We must export our App component usingES6 modules, that's why you can see

export default App

in the last line of the snippet.

Now, you should have CounterApp shown in anh1 tag in the browser.

To start building the counter app, we have to declare a state with our useState hook. This is

normally done by declaring two variables, the state and another to update the

state,setState. This is done by using array destructuring and initializing the state to 0.

 P a g e | 11

Right before there turn statement, React allows us to write pure JavaScript, so,we can pass

the identifier into the on Clicks then write the functions before the return statement.

To make our little app a little more beautiful, let’s add the styles in the snippet below:

SAMPLE OUTPUT:

 P a g e | 12

Experiment – 8

AIM:

Build a FavoriteColor component using the useState hook.

DESCRIPTION:

The useState hook allows us to store and update values within functional components. Here, we use

useState to store the user's favorite color and display it dynamically. When the user types in their favorite

color, the component updates in real-time to reflect their choice.

SOLUTION:

1. Setup:

- Import the `useState` hook from React.

- Initialize a state variable `color` with an empty string, and a function `setColor` to update it.

2. Create the Component:

- The component includes an input field for users to enter their favorite color.

- A dynamic message displays the color entered.

3. Explanation:

- `useState` initializes `color` with an empty string. `setColor` is used to update this state.

- `onChange` Event updates the `color` state each time the input changes.

- Dynamic Display: The paragraph below the input field reflects the latest `color` value.

4. Usage:

- Add `<FavoriteColor />` to your main app or another component to render it.

This component is a simple, interactive way to introduce state management with `useState` in React.

SAMPLE OUTPUT:

 P a g e | 13

Experiment – 9

AIM:

Implement pagination using the useState, useEffect hooks and Fetching Data.

DESCRIPTION:

Requirements

 react-paginate

 axios

Create your react project

yarn create react-app projectname

and install the required modules

yarn addaxios react-paginate

and then open your app.jsfile.

1. We will first import our hooks from the react and also import the required

modules.

2. Nowcreateafunctionalcomponentandinsidethatinitializesomestateusing

React useState hook.

3. Now we will create a getData function to load our data from the dummy API

usingAxios.Thiswillbeanasynchronousfunctionthatwillfetch5000arraysof images from

JSON placeholder API. Paste the below code inside the functional component.

4. Now call that getData methodinsideReactuseEffectmethod.

5. Create a method to handle our page click.Paste the below code inside the

functional component.

6. Now all you need is to return your data state and ReactPaginate tag which we

previously imported from react-paginate.

7. We also need to pass our pageCount state to react paginatepage Count props

and handle PageClickmethodtoonPageChangeprops.

P a g e | 14

SAMPLE OUTPUT:

P a g e | 15

Experiment – 10

AIM:

Build Timer & Counter components using useEffect Hooks without and with Dependency

respectively.

DESCRIPTION:

The useEffect Hook allows you to perform side effects in your components.

Some examples of side effects are: fetching data, directly updating the DOM, and timers.

useEffect accepts two arguments. The second argument is optional.

useEffect(<function>, <dependency>)

Timer Component:

Use setTimeout() to count 1 second after initial render:

EXPLANATION:

It keeps counting even though it should only count once!

useEffect runs on every render. That means that when the count changes, a render happens, which

then triggers another effect.

This is not what we want. There are several ways to control when side effects run.

We should always include the second parameter which accepts an array. We can optionally pass

dependencies to useEffect in this array.

SAMPLE OUTPUT:

P a g e | 16

Counter Component:

useEffect Hook that is dependent on a variable.

If the count variable updates, the effect will run again:

SAMPLE OUTPUT:

P a g e | 17

Experiment – 11

AIM:

Render a form component with validation using the useState hook.

DESCRIPTION:

The use State() is a hook in ReactJs which allows functional component to have a state.

We pass the initial state in this function, and it returns us a variable and a function to

update that state.

 We have to import the useState() hook from the react

package. import{ useState } from 'react';

 SyntaxtocreatestateusinguseState()hook:

const[state,updateState]=useState("InitialValue")

The useState() returns a list with two-element. first is the state itself, and the second is the

function to update this state.

Creating React Application:

Step 1: Create a React application using the following

command: npx create-react-app foldername

Step 2: After creating your project folder, i.e., foldername, move to it using the following

command:

cd folder name

Validation of Input value in React allows an error message to be displayed if the

user has not filled out the form with the expected value. There are many ways to

validate input value with React.

SAMPLE OUTPUT:

https://www.geeksforgeeks.org/reactjs-usestate-hook/

P a g e | 18

Experiment – 12

AIM:

Create a To-do List app using the useState, useEffect and useContext hooks.

DESCRIPTION:

Hooks were introduced in React16.8.They allow the use of state and other React features

by using functional components. There are various types of hooks available in React for

example useState,useEffect, and useContext among others.FortheTo-doList project, we

will only be using the useState hook.

useState: allows adding of state to a functionalcomponent.

Styled-component on the other hand is a popular library that is used to style react

applications. It allows writing actual CSS in your JavaScript.

To-DoApp

The To Do App that we are going to build will allow a user to add a task to a list of to-do

items. Once the task is added, the user will be ableto mark it as completed once it's done.

When you click on atask if it was pending it will be marked as completebycrossing

thetask

withaline.Therewillbeacountthatwillbedisplayingboththependingandcompletedtasks.

SAMPLE OUTPUT:

P a g e | 19

Experiment – 13

AIM:

Create a React App using the Nested Components and useContext hook.

DESCRIPTION:

A component can contain within itself, several more components. This helps in creating more

complex design and interaction elements. Render method: In its minimal form, a component must

define a render method specifying how it renders to the DOM.

SAMPLE OUTPUT:

P a g e | 20

Experiment – 14

AIM:

Create a React App for tracking the state changes by using useRef hook.

DESCRIPTION:

The useRef Hook allows you to persist values between renders. It can be used to store a mutable

value that does not cause a re-render when updated. It can be used to access a DOM element directly.

SAMPLE OUTPUT:

P a g e | 21

Experiment – 15

AIM:

Create a React App for tracking the multiple pieces of the state changes by using the useReducer and

Custom State logic.

DESCRIPTION:

To create a React app for tracking multiple pieces of state changes using use Reducer and custom

state logic, you can follow these steps:

Step 1: Set up a new React app using Create React App or your preferred method.

Step 2: Create a custom hook for state management. We'll call it use State With History to track state

changes.

SAMPLE OUTPUT:

P a g e | 22

P a g e | 23

Experiment – 16

AIM:

Create a React App to demonstrate how to fetch data by using API call.

DESCRIPTION:

To fetch data from an API in React, you can use the fetch() function, a built-in function for making

HTTP requests. Here is an example of how you can use fetch() to get data from an API and set it in

the state of your React component. In this example, the fetchData() function is used to fetch the data

from the API.

Install create-react-app by running

npm-create-react-app myapp

After installation,change the directory to the myapp folder by running

cd myapp

I’m using myapp here but you can call your app anything you want. Run

npm start

To start the development server whichisalwaysavailableatport3000,

i.e.http://localhost:3000.Whentheserverstartsrunningonport3000,youseeaspinner.

SAMPLE OUTPUT:

P a g e | 24

Experiment – 17

AIM:

Build a Password Generator App using React hooks.

DESCRIPTION:

To generate a random password, the application utilizes the `generate Password` function. This

function constructs the password by iterating through selected character sets based on user

preferences.

SAMPLE OUTPUT:

P a g e | 25

Experiment – 18

AIM:

Build a real-time chat app using the React hooks.

DESCRIPTION:

Getting setup for work

React requires both Node and npm.

Let’s spin up a new project from the Terminal:

npxcreate-react-appsocket-client

cd socket-client

npm start

Now we should be able to navigate to http://localhost:3000 in the browser and get the

default welcome page for the project.

Fromhere,we’regoingtobreaktheworkdownbythehookswe’reusing.Thisshouldhelpusunder

standthe hooks as we put them into practical use.

Using the useStatehook:

The first hook we’regoing to use is useState. It allows us to maintain state within our

component as opposed to, say, having to write and initialize a class using this.state.Data

that remains constant, such as username, is stored in useState variables. This ensures the

data remains easily available while requiring a lot less code to write.

The main advantage of useState is that it’s automatically reflected in the rendered

component whenever we update the state of the app. If we were to use regular variables,

they wouldn’t be considered as the state of the

componentandwouldhavetobepassedaspropstore-

renderthecomponent.So,again,we’recutting out alot of work and streamlining things in

the process.

The hook is built right into React, so we can import it with a singleline:

importReact,{useState}from 'react';

Wearegoingtocreateasimplecomponentthatreturns“Hello”iftheuserisalreadyloggedinoralogi

nformif the user is logged out. We check the id variable for that.

Our form submissions will be handled by a function we’re creating called handle

Submit. It will check if the Name form field is completed. If it is, we will set the id and

room values for that user. Other wise, we’ll throwin a message reminding the user that

https://reactjs.org/docs/hooks-state.html

P a g e | 26

the Name field is required in order to proceed.

Using the use Effecthook:

WearegoingtousetheuseEffecthooktorunapieceofcodeonlywhentheapplicationloads.Thise

nsuresthat our code only runs once rather than every time the component re-renders with

new data, which is good for performance.

All we need to do to start using thehook is to importit.

importReact,{useState,useEffect}from'react';

Wewillneedacomponentthatrendersamessageoranupdatebasedonthepresenceorabsence

ofa sende ID in the array. Being the creative people we are, let’s call that component

Messages.

Anothertouchwe’llthrowinforgoodmeasureisa“join”messageiftheusernameandroomnamea

recorrect. This triggers the rest of the event listeners and we can receive past messages

sent in that room along with any updates required.

https://reactjs.org/docs/hooks-effect.html

P a g e | 27

SAMPLE OUTPUT:

P a g e | 28

	Course Outcomes (CO’s)
	AIM:
	Installation of NodeJS, ReactJS Libraries, Create ReactJS App, and Run ReactApp.
	DESCRIPTION:
	The installation of Node.js and npm, the installation of essential React.js libraries, the creation of a new React app using Create React App, and the process of running the newly created React application. It provides step-by-step instructions to hel...
	AIM: (1)
	Create a function component for displaying Employee details in a table format using the props.
	DESCRIPTION: (1)
	A React function component is one of the fundamental building blocks of a React application. It is a JavaScript function that returns JSX (JavaScript XML) to define the structure and content of a user interface component. React function components are...
	Function components can accept input data, known as "props" (short for properties). Props are passed into the component as arguments to the function and allow you to customize the behaviour and appearance of the component.
	npm-create-react-app myapp
	Cd myapp
	npm start
	AIM: (2)
	Create a Class component for Student and display student details in a table format using theprops.
	DESCRIPTION: (2)
	A class component must include the extends React.component statement. This statement creates an inheritance to React.Component, and gives your component access to React.Component's functions.
	The component also requires a render() method, this method returns HTML.
	When creating a React component, the component's name must start with an uppercase letter.
	npm-create-react-app my app
	cd myapp
	npm start (1)
	AIM: (3)
	Create a Stateful Class component for Employee and display the details using <div> tag.
	DESCRIPTION: (3)
	‘<div>’ tag is a fundamental HTML element used for creating a container or a "division" in the user interface. It doesn't have any specific behaviour in React; instead, it's primarily used for structuring and grouping other elements and components.
	npm-create-react-app myapp (1)
	cd myapp (1)
	npm start (2)
	AIM: (4)
	Create a Stateless function component for Student and display the details along with percentage.
	DESCRIPTION: (4)
	A stateless function component is a typical React component that is defined as a function that does not manage any state. There are no constructors needed, no classes to initialize, and no lifecycle hooks to worry about. These functions simply take pr...
	npm-create-react-app myapp (2)
	cdmyapp
	Nnpm start
	AIM: (5)
	DESCRIPTION: (5)
	SOLUTION:
	AIM:
	Build a Counter app using the useState hook
	DESCRIPTION:
	npm-create-react-app myapp
	cd myapp
	npm start
	export default App

	SOLUTION: (1)
	SAMPLE OUTPUT:
	AIM:
	Implement pagination using the useState, useEffect hooks and Fetching Data.
	Creating React Application:
	AIM: (1)
	Create a To-do List app using the useState, useEffect and useContext hooks.
	To-DoApp
	npm-create-react-app myapp
	cd myapp
	npm start
	Using the useStatehook:

	Using the use Effecthook:

